Autonomous Time - Frequency Cropping and Feature - Extraction Algorithms for Classification of Lpi Radar Modulations
نویسنده
چکیده
Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instruction, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington 11. SUPPLEMENTARY NOTES The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S. Government. 12a. DISTRIBUTION / AVAILABILITY STATEMENT Approved for public release; distribution is unlimited. 12b. DISTRIBUTION CODE A 13. ABSTRACT Three autonomous cropping and feature extraction algorithms are examined that can be used for classification of low probability of intercept radar modulations using time-frequency (T-F) images. The first approach, Erosion Dilation Adaptive Binarization (EDAB), uses erosion and a new adaptive threshold binarization algorithm embedded within a recursive dilation process to determine the modulation energy centroid (radar's carrier frequency) and properly place a fixed-width cropping window. The second approach, Marginal Frequency Adaptive Binarization (MFAB), uses the marginal frequency distribution and the adaptive threshold binarization algorithm to determine the start and stop frequencies of the modulation energy to locate and adapt the size of the cropping window. The third approach, Fast Image Filtering, uses the fast Fourier transform and a Gaussian low-pass filter to isolate the modulation energy. The modulation is then cropped from the original T-F image and the adaptive binarization algorithm is used again to compute a binary feature vector for input into a classification network. The binary feature vector allows the image detail to be preserved without overwhelming the classification network that follows. A multi-layer perceptron and a radial basis function network are used for classification and the results are compared. Classification results for nine simulated radar modulations are shown to demonstrate the three feature-extraction approaches and quantify the performance of the algorithms. It is shown that the best results are obtained using the Choi-Williams distribution followed by the MFAB algorithm and a multi-layer perceptron. This setup produced an overall percent correct classification (Pcc) of 87.2% for testing with noise variation and 77.8% for testing with modulation variation. In an operational context, the ability to process and classify LPI signals autonomously allows the operator in the field to receive real-time results.
منابع مشابه
Detection, Identification & Classification of Intra Pulse Modulated LPI Radar Signal using Digital Receiver
The modern day Electronic Warfare(EW) receivers are required to match with the current day radar technologies like the Low Probability of Intercept(LPI) radars with various intra pulse modulations such as Chirp, Barker, Frank, Poly-phase and Poly time codes. This paper presents the state of the art single board Digital Receiver solution for intercepting and analyzing complex radar signals. Also...
متن کاملA Modified Grey Wolf Optimizer by Individual Best Memory and Penalty Factor for Sonar and Radar Dataset Classification
Meta-heuristic Algorithms (MA) are widely accepted as excellent ways to solve a variety of optimization problems in recent decades. Grey Wolf Optimization (GWO) is a novel Meta-heuristic Algorithm (MA) that has been generated a great deal of research interest due to its advantages such as simple implementation and powerful exploitation. This study proposes a novel GWO-based MA and two extra fea...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملClassification of ECG signals using Hermite functions and MLP neural networks
Classification of heart arrhythmia is an important step in developing devices for monitoring the health of individuals. This paper proposes a three module system for classification of electrocardiogram (ECG) beats. These modules are: denoising module, feature extraction module and a classification module. In the first module the stationary wavelet transform (SWF) is used for noise reduction of ...
متن کاملAn Improved K-Nearest Neighbor with Crow Search Algorithm for Feature Selection in Text Documents Classification
The Internet provides easy access to a kind of library resources. However, classification of documents from a large amount of data is still an issue and demands time and energy to find certain documents. Classification of similar documents in specific classes of data can reduce the time for searching the required data, particularly text documents. This is further facilitated by using Artificial...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006